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Self-similar power transforms in extrapolation problems
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A method is suggested allowing for the improvement of accuracy of self-similar
factor and root approximants, constructed from asymptotic series. The method is based
on performing a power transforms of the given asymptotic series, with the power of
this transformation being a control function. The latter is defined by a fixed-point con-
dition, which improves the convergence of the sequence of the resulting approximants.
The method makes it possible to extrapolate the behaviour of a function, given as an
expansion over a small variable, to the region of the large values of this variable. Several
examples illustrate the effectiveness of the method.
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1. Introduction

In the majority of realistic computational problems, the sought function,
satisfying a very complicated set of equations, cannot be defined for the whole
range of its variable, but can be found only for asymptotically small values of
this variable. At the same time, the most interesting could be the behaviour of
the function at very large values of the variable. This is the standard situation
in extrapolation problems, repeatedly appearing in various applications.

Suppose we are looking for a real function f (x) of a real variable x ∈
[0, ∞). By means of perturbation theory or an iterative procedure, we can find
the behaviour of this function at asymptotically small x → 0. But what of the
most practical interest in many cases is the behaviour of f (x) at very large x, say
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as x → ∞. It is this the most difficult extrapolation problem that we address in
the present paper: How, knowing the behaviour of f (x) only at x → 0, to define
the value f (∞) for x → ∞.

There exist several extrapolation methods, among which the most known
are the Padé summation [1], Borel and Padé-Borel summations [2], and the opti-
mized perturbation theory [3]. The latter was, first, advanced in [3] and now-
adays is widely employed for various applications, as can be inferred from the
review works [4, 5]. Another extrapolation method is based on the self-similar
approximation theory [6–11]. Using the techniques of this theory, supplemented
by the fractal transforms [12, 13], we have recently derived a novel types of ap-
proximants allowing for an effective summation of power series and, hence, for
their extrapolation. These are the self-similar exponential approximants [14, 15],
self-similar root approximants [16–18], and self-similar factor approximants [19,
20]. The exponential approximants are appropriate for extrapolating functions
corresponding to exponentially varying processes, while the root and factor ap-
proximants suit well for extrapolating functions with power-law behaviour. The
self-similar approximants were shown to be simpler and more accurate than the
Padé approximants [16–20].

In the present paper, we aim at improving further the accuracy of the factor
and root approximants by introducing a control function through a power trans-
form of the initial asymptotic series. The new technique is illustrated by several
examples of extrapolation from f (x) at x → 0 to f (∞).

2. Self-similar summation of power transforms

Assume that the behaviour of the sought function f (x) is known only for
asymptotically small x → 0, when the function can be represented as an expan-
sion in powers of x, being approximated by the series

fk(x) =
k∑

n=0

anx
n, (1)

where k = 0, 1, 2, . . . Without the loss of generality, we may consider such
expansions for which a0 = 1, so that f (0) = 1. Really, in the case when

f (x) � f0(x)
(
1 + a1x + a2x

2 + · · · ) ,

with a nontrivial f0(x), not expandable in a power series, we may always define

f (x) ≡ f (x)

f0(x)
,

after which the series for f (x) acquire the form (1), where a0 = 1. Our aim is,
being based on the behaviour of f (x) at x → 0, where it is approximated by the
series (1), to find f (∞) at x → ∞.
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The novel trick, we advocate in this paper, is to introduce a control func-
tion m = mk(x) by means of the power transform

Pk(x, m) ≡ f m
k (x). (2)

Taking the power m of series (1), we reexpand the result in x obtaining

Pk(x, m) =
k∑

n=0

bn(m)xn (3)

with bn(m) defined through an. A particular case of transform (2) is an inverted
series with m = −1, which we have considered earlier. However, fixing the power
m is not the best choice and here we shall advance a more general and rigor-
ous way of selecting m. Expansion (3) serves as a basis for constructing in the
standard ways [12–20] the self-similar factor and root approximants. Even-order
factor approximants [19, 20] are defined as

F2k(x, m) =
k∏

i=1

(1 + Aix)ni (4)

and odd factor approximants can be represented as

F2k+1(x, m) = 1 + b1x

k∏

i=1

(1 + Aix)ni (5)

with the parameters Ai=Ai(m) and ni=ni(m) defined by the accuracy-through-
order procedure with respect to series (3). This means that equations (4) or (5)
are to be expanded in powers of x, and these expansions have to be compared
with equation (3), equating the terms of like orders.

For the root approximants [16–18], we have

R2k(x, m) =
((

. . . (1 + A1x)n1 + A2x
2)n2 + · · · + Akx

k
)nk

(6)

in even orders, and

R2k+1(x, m) = 1 + b1x
((

. . . (1 + A1x)n1 + A2x
2)n2 + · · · + Akx

k
)nk

(7)

in odd orders. The parameters Ai=Ai(m) and ni=ni(m) could be defined in two
ways. If the behaviour f (x) at x→∞ would be known, this could be used for
uniquely defining all parameters [4]. Another way is to determine these param-
eters by means of the accuracy-through-order procedure. The second way may
yield multiple solutions, which, however, are usually close to each other [21]. In
what follows, we shall present only the most accurate approximant. The advan-
tage of the root approximants is their ability to catch rather complicated asymp-
totic behaviour at large x, including corrections to the main scaling.
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Defining the parameters Ai(m) and ni(m) by the accuracy-through-order
procedure, we assume that the limit f (∞) exists and finite, which imposes an
additional constraint on the sum

∑k
i=1 ni .

After constructing a factor approximant Fk(x, m) or a root approximant
Rk(x, m) for the power transform (3), we have to accomplish the transformation
inverse to equation (2), thus, obtaining either

fk(x, m) ≡ [Fk(x, m)]1/m (8)

or

rk(x, m) ≡ [Rk(x, m)]1/m . (9)

The improvement of the accuracy, as compared to the factor and root ap-
proximants not involving the power transformation (2), is achieved by defining
a control function m=mk(x) from a fixed-point condition. In general, there exist
several types of such fixed-point conditions, which, actually, are equivalent to
each other [4]. Here we use the simplest of them, the minimal sensitivity con-
dition, which gives either

∂

∂m
fk(x, m) = 0, m = mk(x) (10)

or
∂

∂m
rk(x, m) = 0, m = mk(x), (11)

depending on whether the factor approximant (8) or root approximant (9) is con-
sidered. With the so defined control function mk(x), we get either

f ∗
k (x) ≡ fk(x, mk(x)) (12)

or

r∗
k (x) ≡ rk(x, mk(x)). (13)

From here, keeping in mind our main aim to extrapolate the sought function to
the limit x → ∞, we obtain either

f ∗
k (∞) = lim

x→∞ f ∗
k (x) (14)

or

r∗
k (∞) = lim

x→∞ r∗
k (x). (15)

Below, we shall illustrate the method by several examples, confronting the found
approximants f ∗

k (∞) and r∗
k (∞) with known values of f (∞). Note that for

defining the limits (14) or (15), we, actually, do not need to have the whole func-
tion mk(x), but what we need to have is just a limiting value mk = mk(∞), which
is a constant.
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3. Stirling series for factorial function

Let us consider the factorial function

f (x) = 1√
2π

e1/xx1/x�

(
1 + 1

x

)
,

where �(·) is a gamma function. As x tends to zero, one has

f (x) � 1√
x

(x → 0).

Therefore, we define the reduced function

f (x) ≡ √
x f (x),

whose small-x expansion has the form of Equation (1), so that, as x → 0, then

f (x) � 1 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5.

The expansion coefficients are

a1 = 1
12 , a2 = 1

288 , a3 = − 139
51840 , a4 = − 571

2488320 , a5 = 163879
209018880 .

Thence, we shall apply the procedure of section 2 to the function f (x), and at
the end, we will return to the sought function f (x) = f (x)/

√
x, looking for the

limit f (∞). The exact limit for the factorial is

f (∞) = 1√
2π

= 0.398942.

Following the method, described in section 2, we find r∗
5 (∞) = 0.458, whose

error, as compared with the exact f (∞), is 15%. The factor approximant
f ∗

5 (∞) = 0.406 is much better, with an error of only 2%. Comparing this with
the Padé approximants, we should remember that these are not uniquely defined,
yielding for each given order a whole table of approximants [1]. One often con-
siders solely the diagonal approximants. For the present example, the diagonal
Padé approximant P[2/2] describes [22] the factorial-function limit f (∞) with an
error of 14%. Thus, the factor approximant f ∗

5 (∞) = 0.406 is the most accu-
rate. It is worth emphasizing that a direct application of the factor-approxima-
tion technique, without involving the power transformation (2), would give the
limiting value 0.169, which is a very bad approximation. Hence, employing the
power transformation is a crucial point in improving the accuracy of the approx-
imants.
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4. Debye-Hückel function for strong electrolytes

The function

D(x) = 2
x

− 2
x2

(
1 − e−x

)

arises in the Debye-Hückel theory of strong electrolytes [23]. At small x → 0,
this function possesses an expansion of the type (1), with

a1 = − 1
3 , a2 = 1

12 , a3 = − 1
60 , a4 = 1

360 , a5 = − 1
2520 .

We shall be interested in finding the limiting value f (∞) of the reduced function

f (x) ≡ xD(x) ,

whose exact limit is f (∞) = 2.
Using the technique of section 2, we get for the best root approximant

r∗
5 (∞) = 1.993, whose error is −0.4%. For the uniquely defined factor approxi-

mant, we find f ∗
5 (∞)=1.779, with an error of −11%. Note that without invoking

the power transform, there are no real solutions for the sought limit. Thus, the
usage of the power transformation (2) is principal here. The best Padé approxi-
mant, employing the same coefficients an, gives the limit f (∞) with an error of
−33%.

5. Critical temperature of Bose gas

Bose-Einstein condensation in dilute Bose gas has attracted much attention
in recent years (see reviews [24–27]). One of the interesting problems, which has
been intensively studied, is the influence of atomic interactions on the shift of
the critical temperature. One considers the relative variation of the critical tem-
perature

�Tc

T0
≡ Tc

T0
− 1,

due to weak atomic interactions, as compared to the condensation temperature

T0 = 2π–h2

mkB

[
ρ

ζ(3/2)

]2/3

of the ideal homogeneous Bose gas. The lowest term in the expansion of the crit-
ical-temperature shift with respect to the small gas parameter

γ ≡ ρ1/3as,



S. Gluzman and V.I. Yukalov / Power transforms in extrapolation problems 53

where ρ is particle density and as , scattering length, is commonly represented as

�Tc

Tc

� c1γ (γ → 0).

The coefficient c1 has been calculated by a number of various methods. Review
of the related literature up to 2004 can be found in [25, 27]. The most accurate
are the results for c1 obtained by means of the Monte Carlo simulations and
using the optimized perturbation theory. Less accurate are the results based on
a renormalization-group approach [28, 29]. Lattice Monte Carlo simulations by
Arnold and Moore [30, 31] give c1 = 1.32 ± 0.02 and by Kashurnikov et al.
[32] and Prokofiev and Svistunov [33], c1 = 1.29 ± 0.05. Path integral Monte
Carlo simulations by Nho and Landau [34] give c1 = 1.32 ± 0.14. A variant [5]
of optimized perturbation theory, employed by Kastening [35–37], yields c1 =
1.27±0.11, and the optimized perturbation theory used by Kneur et al. [38] and
Kneur and Pinto [39], results in c1 = 1.30 ± 0.03. Here, we shall calculate the
coefficient c1 by means of the technique of section 2.

The coefficient c1 can be expressed as an asymptotic expansion

c1(g) � a1g + a2g
2 + a3g

3 + a4g
4 + a5g

5

in powers of an effective coupling parameter [36], where

a1 = 0.223286, a2 = −0.0661032, a3 = 0.026446,

a4 = −0.0129177, a5 = 0.00729073.

This expansion is valid for g → 0. But the sought value of c1 is given by the
limit

c1 = lim
g→∞ c1(g).

Employing the factor approximants, complimented by the power transformation
(2), we have f ∗

5 (∞)=c1=1.09, which is close to the values found by other meth-
ods. Summing the strong-coupling expansion with the help of the root approx-
imants and defining the parameters from the weak-coupling expansion, we get
r∗

5 (∞) = 1.19.

6. Structure factor of branched polymers

The structure factor of three-dimensional branched polymers is given [40,
41] by the confluent hypergeometric function

S(x) = F1

(
1; 3

2
; 3

2
x

)
.
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We shall consider the reduced function

f (x) ≡ xS(x),

whose limit f (∞) = 1/3 is finite. At asymptotically small x → 0, the function
f (x) possesses an expansion of the form (1), with a0 = 1. Several other expan-
sion coefficients are

a1 = −1, a2 = 0.6, a3 = −0.257, a4 = 0.086.

The best approximant, obtained by the method of Section 2, is f ∗
5 (∞) =

0.329, whose error is −1.3%. This is much more accurate than the best Padé
approximant of the same order having an error of −266%.

7. Discussion

In this paper, we suggested a method for improving the accuracy of self-
similar approximants by introducing a control function through the power trans-
formation (2). As is shown by several examples, the accuracy really becomes
essentially better.

Here we have concentrated our attention on the extreme extrapolation
problem, when from the behaviour of a function f (x) at asymptotically small
x→0 one has to find the limit f (∞) for x→∞. This extrapolation problem is
one of the most difficult. If we are able to accurately predict the behaviour of
a function f (x) at x→∞, then, as is clear, it is even easier to approximate its
behaviour for finite x.

As an illustration of the latter statement, we may consider the expansion
factor of a polymer. The properties of polymers are of great importance for
a variety of applications [42]. Let us, for example, consider the expansion fac-
tor α(z) for a three-dimensional polymer chain with excluded-volume interac-
tion, where z is a dimensionless coupling parameter [43, 44]. From an asymptotic
series of the type (1), derived by means of perturbation theory [43], we construct
the expansion factor

α∗(z) = 1.5286z0.3543
[(

1 + 0.1552z−1)−0.0749 + 0.3302z−0.9252
]0.383

.

This is obtained by considering a large-z expansion, resumming it by means of
the root approximants, and determining all unknown exponents and amplitudes
from the weak-coupling expansion of fourth order. The strong-coupling expo-
nent

ν ≡ 1
2

+ 1
4

lim
z→∞

ln α(z)

ln z
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for our approximant α∗(z) is ν = 0.5886, which coincides with the value found
numerically [43–45]. That is, the approximant α∗(z) possesses a correct scaling
behaviour. It also gives a nontrivial correction to the scaling, with an exponent
of −0.9552. The expression α∗(z) is valid for all z ∈ [0, ∞), differing from the
known numerical values [44] by not more than 0.3%.
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